

Тестер диодных оптопар

Инструкция по эксплуатации

Diode optopair tester (Тестер диодных оптопар)-, в дальнейшем именуемое "Тестер", предназначено для исследования оптопар на основе полупроводниковых фото- и светодиодов.

"Тестер" имитирует различные режимы работы светодиода, излучение с которого регистрируются 2-мя фотодиодами. Показания с фотодиодов оцифровываются и передаются на персональный компьютер (PC), через стандартный СОМ-порт, где в режиме реального времени, посредством программного продукта "Diode optopair tester" можно вести наблюдение за сигналами фотодиодов. С помощью программы "Diode optopair tester" можно моделировать различные режимы работы светодиода, изменяя величину и длительность импульса тока.

В "Тестер" введена возможность использовать прибор применительно к задаче детектирования газов CO (λ=4,7 мкм), CO2 (λ=4,3 мкм), CH4 (λ=3,3 мкм).

В "Тестере" установлен температурный датчик, который определяет температуру газовой кюветы.

Инструкции по технике безопасности.

- 1. Внимательно прочитайте все указания.
- 2. Следуйте всем предупреждениям и инструкциям,
- 3. Не пользуйтесь "Тестером" во влажных местах.
- 4. Ставьте прибор на устойчивую поверхность. Падение прибора может быть причиной серьезной неисправности и/или повреждения.
- 5. Блок питания "Тестера" питается от сети 200-240 В / 50-60 Гц, использование других источников питания запрещено.
- 6. Не прикасайтесь к открытым участкам "Тестера" во время его работы.
- 7. Держите "Тестер" вдали от устройств, создающих электрически помехи, такие как электродвигатели и люминесцентные лампы.
- 8. Оберегайте прибор от пыли, влаги, высокой температуры, прямого воздействия солнечных лучей и вибрации.
- 9. Не кладите на "Тестер" посторонние предметы.

Комплект поставки

1.	"Тестер" диодных оптопар	1шт.
2.	Блок питания	1шт.
3.	Диск с программой "Diode optopair tester"	1шт.
4.	Шнур для подключения к РС через СОМ порт	1шт.

1.1 Описание Тестера диодных оптопар

Внешний вид "Тестера" представлен на рисунке 1.1. Габаритные размеры прибора не превышают 195*140*70 мм, вес не более 0.3кг.

Основные элементы "Тестера" диодных оптопар:

1. Корпус.

2. Розетка для подключения блока питания.

3. СОМ порт для подключения кабеля.

4. Контактная площадка для подсоединения светодиода.

- 5. Контактные площадки для подсоединения фотодиодов
- 6. Газовая кювета
- 7. Штуцера для подвода/отвода газа.

1.2 Порядок работы с тестером

1.2.1 Установка свето и фотодиодов.

Установку свето(фото)диодов производить только при отключенном питании "Тестера", строго соблюдая полярность, катод соединяется с "-", анод - "+". Обратите внимание на то,

что расположение клемм для свето и фотодиодов различны (см. рисунок 1.1 позиции 5 и 4).

Для установки диода необходимо на контактной площадке:

1. 2.

- Открутить болты 1 и 2 (см. рисунок 1.2)
- Диод 5 вставить в отверстие в газовой кювете 6

3. Шайбами 3 и 4 прижать контакты диода (строго соблюдая полярность, катод соединяется с "-", анод - "+")

<u>4.</u> Затянуть болты 3 и 4 для обеспечения хорошего контакта диода с клеммами.

<u>Рис 1.2</u> По приведенной выше схеме устанавливаются один светодиод на и два фотодиода на соответствующие контактные площадки (см. рисунок 1.1).

1.2.2. Подключение "Тестера" к РС

"Тестер" к РС подключается через стандартный СОМ-порт с помощью стандартного кабеля типа "СОМ-порт – СОМ-порт". Соединять кабель к "Тестеру" и РС следует до включения приборов в сеть питания. Кабель подключается к СОМ-порту "Тестера (см. рисунок 1.1 поз. 3).

<u>1.2.3. Подключение "Тестера" к</u> блоку питания и начало работы

Блок питания подключается к

розетке 2 рисунок 1.1. Включать блок питания в сеть, следует только после того как вы убедитесь, что все диоды на месте и "Тестер" подключен к PC (см. рисунок 1.3)!

Для дальнейшей работы запустите программу "Diode optopair tester" на РС.

2. Программа "Diode optopair tester"

Программа "Diode optopair tester" предназначена для работы с "Тестером диодных оптопар" и совместима с операционными системами Windows 98, Windows ME, Windows XP. Программа "Diode optopair tester" позволяет:

- Получать и проводить обработку экспериментальных данных в реальном времени.
- Выводить на монитор полученные результаты в виде графиков .
- Менять режим эксперимента (параметры импульсов тока светодиода)

ВНИМАНИЕ!!!

При изменении параметров импульсов тока следует руководствоваться эмпирическим правилом: Imax=I* max /(20*SQRT(f*t))

где f-частота следований импульсов, в "Tecrepe" f=500 Hz, t-длительность импульса (s), I* maxмаксимальный ток (A) для условий t=5 и f=500 Hz. Выражение дает оценку, но не точное значение при t<100 мкс. При длительностях импульса более 150 мкс такой режим следует считать режимом постоянного тока. Длинные импульсы разогревают диод, что проявляется в падении сопротивления в течение импульса. Часто из-за отсутствия теплосъема температура диода постепенно повышается.

 Сохранять данные в файле с расширением "*.dat", в виде таблиц формата ASCII, совместимом с широко известными программами MS Excel, Origin для последующего просмотра и математической обработки.

2.1 Работа с программой "Diode optopair tester"

Для начала работы с программой необходимо запустить с диска файл "Plnk.exe", при этом откроется рабочее окно программы (см. рисунок 2.1). Окно программы "Diode optopair tester" представляет собой рабочее поле, на котором выводится графическое изображение приходящего сигнала, и меню пользователя, состоящего из главного и рабочего меню, по средствам которых можно управлять программой. Надпись в правом нижнем углу "Transfer Ok" означает что "Tecrep" работает нормально и сигнал с него поступает на компьютер. Надпись "Transfer Error" означает, что в системе имеются неполадки, которые необходимо устранить, для этого воспользуйтесь таблицей 1.

🖟 Diode optopair tester		_ 🗆 ×
<u>File S</u> etup <u>H</u> elp		
13 🕾 X 🕅 🕅 🕅 🕅	ĥ	
0.9		
^{0.8} 7 6 2 1	3 4 5	
ŧ0.7		
Q0.5 ≝n 4		-23 m -22 ee -21 e
^{60.4} ^{0.3}		20 H
0.2		
0.1		
0 4	;	
<u>Рис 2.1</u>	Time (min.sec)	Transfer Ok

2.2 Рабочее меню

Кнопки рабочего меню выбираются нажатием левой клавиши мыши. Для начала получения сигнала нажмите кнопку 1 – "Start" (см. рисунок 2.1), при этом на рабочем поле появятся три кривые красного, зеленого и синего цветов. Красная кривая отображает результаты сигнала с фотодиода "SAMPLE", зеленая – с фотодиода "REF", а синяя – показания температурного датчика. Во время работы кнопка "Start" меняется на кнопку "Stop", которая останавливает процессрегистрации сигнала. Для отчистки рабочего поля пользуйтесь кнопкой 2 – "Clear Screen". Кнопки 3-5 вызывают

LED Parameter Setup					
LED Current (0.01-1A):	Photodia	des			
•	K Ref	Þ			
	Shift Re	►			
Pulse Width:					
	K Sample	►			
10 microseconds Enter	Shift Sampl	▶			
<u>Рис 2.2</u>		Close			

окна настроек.

Кнопка 3 – "Pulse Parameter Setup" вызывает меню настроек импульсов тока подаваемых на светодиод и сигналов от фотодиодов (см. рисунок 2.2).

Регулятор уровня "LED Current"

изменяет значение величины импульсов тока подаваемых на светодиод в пределах от 0.01 до 1 А

При изменении параметров импульсов тока следует руководствоваться эмпирическим правилом: Imax=I* max /(20*SQRT(f*t))

В поле "Pulse Width" устанавливается значение длительности импульса в микросекундах от 10 до 994 с шагом 8.

При длительностях импульса более 150 мкс такой режим следует считать режимом постоянного тока. Длинные импульсы разогревают диод, что проявляется в падении сопротивления в течение импульса. Часто из-за отсутствия теплосъема температура диода постепенно повышается.

Регуляторы уровня "K Ref" и "K Sample" устанавливают коэффициент усиления сигнала поступающего от фотодиодов. Регуляторами уровня "Shift Ref" и "Shift Sample" выставляют начальное значение сигнала относительно вертикальной оси "Relative PD current" поступающего от соответствующих фотодиодов.

Кнопка 4 "Time" (см. рисунок 2.1) вызывает окно в котором можно изменять интервал временной шкалы. Когда стоит галочка в поле "Full screen", то в рабочем поле будет отображаться вся временная зависимость сигналов с настоящего момента до момента нажатия кнопки "Start". Если галочки нет, то отображаться будет только тот интервал времени который указан в поле "Interval in Hour:min:sec" начиная с настоящего момента.

Кнопка 5 "Temperature" открывает окно в котором устанавливаются максимальное и минимальное значение шкалы температуры "Temperature (C)"

Кнопка 6 "Print" открывает окно в котором настраивается установки печати графических результатов исследования и производится печать.

Кнопка 7 "Save to file" открывает окно для записи численных результатов в файл с расширением "*.dat", в виде таблицы формата ASCII.

2.3 Главное меню программы "Diode optopair tester"

Главное меню программы состоит из трех пунктов: "File", "Setup" и "Help". Для входа в него нужно нажать клавишу F10 или кликнуть мышкой на требуемый пункт меню. Для передвижения по меню используйте клавиши "←", "→", "↑", "↓", для выбора – клавишу "Enter", или клик левой клавиши мыши.

В меню "Help" содержится информация для связи с автором программного продукта.

В меню "Setup" имеется возможность настройки дополнительных опций, помимо выведенных в рабочее меню.

В подменю "Serial Port" имеется возможность выбора СОМ – порта к которому подключен "Тестер".

В подменю "Averaging Interval" выбирается количество точек измерения усредненное значение которых будет записываться в файл и выводится на экран.

В пункте меню "File" имеются дополнительные возможности для работы с полученными результатами. При установленной галочке на пункте меню "Enter Comment", перед сохранением файла, вам будет предложено ввести комментарии к полученным данным.

Пункт меню "Printer Setup" вызывает окно настроек принтера.

Пункт меню "Print Preview" открывает окно предварительного просмотра, полученных результатов в графическом виде, перед печатью. Помимо просмотра в этом окне можно изменять вид печатаемой картины (растягивать/сжимать).

После завершения работы с программой для выхода зайдите в меню "File" кнопка "Exit" или нажмите клавиши Alt+F4 или кликните мышью на кнопку "Close" – крестик вверху справа в поле окна.

ПРИЛОЖЕНИЕ

Неисправность	Причина	Метод устранения
В правом нижнем углу надпись "Transfer Error", то есть на PC не приходит сигнал с "Тестера"	На "Тестер" не поступает питание	Проверить подключен ли блок питания и к сети и к "Тестеру". Если нет, то подключить следуя инструкции 1.2.3
	Нет соединения между "Тестером" и РС	Проверить соединение кабеля к СОМ-портам "Тестера" и РС. Если соединения нет, то произвести его, следуя инструкции 1.2.2
	Кабель присоединен к другому СОМ-порту РС	Зайдите в главное меню, "Setup", в подменю "Serial Port" и выберете другой СОМ-порт
	Неправильно установлен свето(фото)диод	Переустановить свето(фото)диод следуя инструкции 1.2.1

Таблица 1 Возможные неисправности и методы их устранения