8×8 photodiode array based on P-InAsSbP/n-InAs single heterostructure

B.A. Matveev^{1, 2.*}, P.N. Brunkov¹, N.D. Il'inskaya¹, S.A. Karandashev¹, A.A.Lavrov²,

M.A. Remennyi^{1, 2}, N.M. Stus^{1, 2} and A.A. Usikova¹

¹ Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation ² IoffeLED, Ltd., 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation

There have been considerable progress over the last decade in developing *InAs* homojunction photodiodes (PDs) including the p-i-n PD arrays for fast response sensing of IR radiation around 3 μ m [1]. InAs based heterojunction photodiodes, e.g. *InAsSbP/InAs* based ones, potentially offer high R_oA product values but most of related investigations were devoted to PDs with abrupt impurity distribution near a p-n junction that is not optimal for high speed operation. To the best of our knowledge there has been only one paper describing operation of InAs heterostructure array near room temperature [2], however room temperature detectivity value was not high enough for some of the sensing applications.

The report presents characterization of P-*InAsSbP*/n-*InAs*/n+-*InAs*(100) single heterostructure PD array of 8×8 dimensions in the 77-385 K temperature range.

Wafers onto heavily doped n⁺-*InAs* (*Sn*) (100) substrates with an electron concentration of n⁺= (2-3)·10¹⁸ cm⁻³ contained two epitaxial layers: 3-4 µm thick n-*InAs* active region and P-*InAsSbP* (*Zn*) (E_g \approx 0.48 eV, 77 K, P=(2-5)·10¹⁷ cm⁻³) cap layer. Monolithic 8×8 matrix contained 64 individually addressable PD elements of ~190×190 µm size.

Capacitance measurements revealed no impact of the frequency on zero bias capacitance in the 0-2 MHz range and showed reverse cubic dependence on bias suggesting nearly linear impurity distribution near a p-n junction. I-V_{FB} curve ideality factor exhibited minima around 200 K ($\beta = 1.03$) and reached $\beta = 1.2$ value at low and elevated temperatures showing negligible influence of tunneling. The latter together with the independence of the (C⁻³)-V slope on temperature states negligible influence or lack of deep recombination centers in P-*InAsSbP*/n-*InAs* single heterostructures under study. As a result nearly unity internal quantum efficiency and nice PD operating parameters have been achieved at low temperatures including low capacitance (10⁻⁷ F·cm⁻², 77 K) and high detectivity values in the thermoelectric range of temperatures and BLIP operation at ~200 K.

The work performed at IoffeLED, Ltd. has been supported by RF state program under contract #14.576.21.0057 (ID: RFMEFI57614X0057).

References

- W.Sun, Zh.Lu, X.Zheng, J.C.Campbell, Sc.J.Maddox, H.P.Nair, and S.R.Bank, IEEE Journal of Quantum Electronics, VOL. 49, NO. 2, p.154-161 (2013).
- N.D.Il'inskaya, S.A.Karandashev, N.G.Karpukhina, A.A.Lavrov, B.A.Matveev, M.A.Remennyi, N.M.Stus', and A.A.Usikova, Applied Physics, issue 6, Pages 47-51(2014).

Fig.1. Schematic (left) and IR image (I_{RB} =-2 mA, right) of the BSI array. 1- P-*InAsSbP*/n-*InAs*/n⁺-*InAs* single heterostructure, 2 –n⁺- *InAs* surface, 3 – mesa walls/p-n junction, 4 – *Si* read-out plate, 5 – anode bonding pads, 6 – cathode bonding pad , 7 – contact to n⁺-*InAs*, 8 –ring contact to n⁺-*InAs*, 9 – contacts to individual anodes. Items 7 and 8 have short circuit.

Fig.2. I-V characteristics of the single array element in the 73-385 K temperature range..

Fig.3. Detectivity spectra of a single array element at 80, 150, 220, 296 and 353 K.