Low frequency noise in reverse biased P-InAsSbP/n-InAs infrared photodiodes

N Dyakonova¹, S A Karandashev², M E Levinshtein², B A Matveev² and M A Remennyi²

E-mail: nina.diakonova@umontpellier.fr

Received 3 September 2018, revised 23 October 2018 Accepted for publication 14 November 2018 Published 6 December 2018

Abstract

We report the first experimental study of low-frequency noise in reverse biased P-InAsSbP/n-InAs infrared photodiodes at 300 K and 77 K. At room temperature, the current noise spectral density, $S_{\rm I}$, depends on frequency as 1/f over the entire current range and tends to the Nyquist noise when the frequency increases. At small reverse currents $I_{rb} \leq 3 \times 10^{-5}$ A, $S_{\rm I}$ is proportional to I_{rb}^2 ; at higher currents this dependence changes to $S_{\rm I} \sim I_{rb}^4$. With temperature decrease down to 77 K, $S_{\rm I}$ becomes proportional to $I_{rb}^{0.5}$, while the reverse current decreases and the differential resistance grows by 4 orders of magnitude. The noise was also studied in the photovoltaic mode at 100 K, where $S_{\rm I}$ is proportional to I_{ph}^2 . We conclude that at 100 K, the Nyquist noise is dominant and can be used for estimations of the specific detectivity of P-InAsSbP/n-InAs diodes.

Keywords: Mid-IR photodetectors, *InAs* photodiodes, low frequency noise, backward bias, photovoltaic mode

Semicond. Sci. Technol. 34 (2019) 015013 (5pp)

https://doi.org/10.1088/1361-6641/aaf0c6

¹Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France

² Ioffe Institute, Politekhnicheskaya 26, St. Petersburg, Russia