Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

J. Yoo¹, V. Prikhodko¹, J.E. Parks¹, A. Perfetto², S. Geckler², W.P. Partridge^{1*}

¹: Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory

²: Cummins Inc.

*: corresponding author, partridgewp@ornl.gov

<u>Appl Spectrosc.</u> 2015 Sep;69(9):1047-58. doi: 10.1366/14-07796. Epub 2015 Aug 6.

Abstract

Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NO_x emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO₂ concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO₂ near 4.3 μ m, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

[&]quot;....The Signal LED, centered at 4.15μ m (loffe, LED42Sr via Boston Electronic Corp.), measures CO₂ absorption and non-absorption losses such as scattering and attenuation, e.g. from soot-fouled optics. The Reference LED, centered at 3.8μ m (loffe, LED38Sr via Boston Electronic Corp.), measures only non-absorption losses...."